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Contemporaneous spillover effects between the US and the UK

Abstract

This paper investigates dynamic and contemporaneous spillover effects between equity

markets in the UK and the US. We use high frequency data and the “identification through

heteroskedasticity” approach of Rigobon (2003) to capture the contemporaneous volatility

spillover effects. Our results imply that during the time when trading hours overlap, higher

stock market volatility in the US leads to higher volatility in the UK. We demonstrate

the relevance of taking into account the information present during simultaneous trading

by comparing the dynamics of the structural VAR with the dynamics of a traditional

VAR. Our findings establish that the bi-directional dynamic linkages between the US and

simultaneous trading periods are overestimated in the traditional VAR. These results have

major implications for risk management and hedging strategies.

JEL Codes: C32; C58; G1.

Keywords: Contemporaneous Spillovers; Identification through heteroskedasticity; Volatil-

ity Spillovers.



1 Introduction

The interrelations among financial markets and assets have been increasing more and more

in recent years (see Bekaert et al., 2009). An example of the consequences of this increased

interconnectedness is the recent outcome of the Global Financial Crisis, which originated

in the US and rapidly spread to other countries. This led to a period of high volatility and

instability, and had a strong negative impact in terms of economic growth for many economies

around the world. The recent crisis clearly demonstrates that economic shocks originating in

one market not only affect that particular market, but are also transmitted to other markets

with serious global consequences. Understanding these “spillover effects” among markets and

between financial assets is therefore of great importance.

The total volatility spillover between different markets and across different regions can be

explained by dynamic and contemporaneous effects. The dynamic effects refer to spillovers

that occur over time. This is the case when we have trading time differences, where one

market is open while the other is closed. In that case, information from one market can have

an impact on the other market but only in the next trading period. Contemporaneous spillover

may be seen as the spillover that takes place at the same time. This can occur, for example,

when markets have overlapping trading hours, and information from one asset/market could

be transmitted to another asset/market within the same trading period. Traditional studies

measure spillover effects using methods based on univariate/ multivariate GARCH models

(Kanas, 2000; Hakim and McAller, 2010; Fang et al., 2007; Capiello et al., 2006). These

studies examine the relations between different markets and assets in different countries by

looking at how information is transmitted across them the next day, i.e., through dynamic

relations. However, these studies do not address the contemporaneous spillover by looking at

the periods when financial markets trade simultaneously.
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The main contribution of this paper is analysing the contemporaneous spillover effects in

volatility. Understanding these spillover effects is essential when markets trade simultaneously.

Information across financial markets is transmitted faster and important news is incorporated

almost instantaneously into asset prices (Andersen et al., 2007). As such, what occurs in one

market may spill-over to the other market during the same period. We apply a structural VAR

and the “identification through heteroskedasticity” approach of Rigobon (2003), to study the

spillover effects among assets in different regions.

An interesting setting is to study the contemporaneous spillover that occurs between stocks

traded in the US and the UK. The S&P 500 and FTSE 100 indices are common representatives

of the stock market and economy in both countries. An issue we face when analysing the

volatility transmission between two markets is the overlapping trading hours between the UK

and the US. Trading in the UK market starts while the US market is closed and continues for

two hours after the US market opens, when both markets trade simultaneously. This implies

that shocks arriving from the UK are incorporated into the US prices on the same day and

vise versa, while some of the US shocks only affect the UK prices on the next day. To analyse

the contemporaneous effects we need to split the trading period in three: the UK and US

parts without overlapping trading hours and the part with overlapping trading hours.

Our results suggest that there is a high variation in the contemporaneous effects, i.e., the US

overlapping stock market has a stronger effect on the UK overlapping stock market than vice

versa, the spillover from UK to US stock market. Moreover, the spillover effects occurring

when markets trade simultaneously have an impact in the same day on the US non-overlapping

stock market. We find that an increase in the UK overlapping stock market leads to a higher

increase in the US stock market, rather than the spillover from the non-overlapping trading

period.

We highlight the implications of our model by comparing the dynamic linkages of our model

with the dynamics generated by a traditional VAR. Our findings clearly reveal the importance

of keeping in mind the information present during simultaneously trading, which is disregarded

in traditional VAR. The dynamic effects from the US stock market to both US and UK
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simultaneous trading periods, respectively vice versa, are overestimated in the traditional

VAR. For instance, while there no strong effect from the US overlapping trading period to

the next day UK trading period, we find that the dynamic spillover to be higher from the US

non-overlapping market. The dynamic linkages confirm the same day transmission of spillover

effects when having simultaneous trading and next day transmission of spillover effects due to

non simultaneous trading. The analysis of variance decomposition indicates that the highest

variation in stock prices can be explained by domestic shocks. Besides the own shocks, we

find that the UK overlapping trading periods shocks are an important determinant of the US

overlapping and non-overlapping price movements.

These results are relevant firstly for risk management and international portfolio diversifi-

cation. Investors aim to have well-diversified portfolios and therefore need to know how

correlations between assets change. We find the spillover effects are asymmetric with differ-

ent sign and magnitude across assets. Secondly, the results have implications for the efficient

implementation of hedging strategies, i.e., in reducing the risk of adverse price movements

in assets. Implementing hedging strategies based on reduced form results, without distin-

guishing between the contemporaneous/dynamic spillover effects, leads to an increase of risk

exposure instead of reducing it.

The rest of the paper is organized as follows. Section 2 reviews the literature on spillover

effects and its applications. Section 3 presents the empirical setting. Section 4 discusses the

data and Section 5 outlines the results. We conclude in Section 6.
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2 Literature review

To provide a better understanding regarding the transmission of spillover effects, we classify

the literature into three groups. The first group includes the papers relying on traditional

methods, such as GARCH and VAR models to identify the lead-lag dynamics at the re-

turn and volatility level. The second group focuses on sampling at higher frequencies when

analysing volatility transmission between markets across regions in an attempt to estimate

contemporaneous spillovers. The last group of studies use a different estimation technique

that relies on heterogeneity in the data to solve the problem of simultaneity and identify the

contemporaneous relations. These studies have the ability to examine the spillover effects

from one market to another and vice versa simultaneously. However, they do not investigate

these dynamics by explicitly focusing on the overlapping trading hours between markets.

2.1 Traditional methods

Among the first studies addressing the spillover effects in volatility is Engle et al. (1990) who

introduce the concepts of “heat wave” and “meteor shower”. A “heat wave” implies that

financial asset volatility is influenced by the previous day’s volatility in the same region. For

instance, a hot day in New York, is likely to be followed by another hot day in New York, but

not typically by a hot day in Tokyo. From another perspective, volatility is closely related to

information flow, meaning that news (defined by shocks, innovations) are transmitted across

borders. The transmission of volatility from one market to another market in different regions

regions corresponds to the hypothesis of “meteor shower”. This is the case when, for example,

a meteor shower in New York is almost likely to be followed by another one in Tokyo.

Engle et al. (1990) use a GARCH model to test whether news in the yen/dollar exchange rates

in the New York market can predict volatility in Tokyo. The finding of a “meteor shower”

effect contradicts the more natural expectation that volatility would instead continue in the

same market the next day, the “heat wave” hypothesis. Thus, even if two markets are in

different regions they are still affected by events occurring in either one of them. Later,

Melvin and Melvin (2003) analyse the volatility transmission of exchange rates over different
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regions and find evidence of both effects, but the “heat wave” effects are larger in magnitude.

Hamao et al. (1990) propose one of the first methods to quantify the volatility spillover

effects between different capital markets. They study the effects of volatility in three mar-

kets1: Tokyo, London and New York using a GARCH-M model. To measure the volatility

transmissions from one period to the next within markets (“heat waves”) and across mar-

kets (“meteor showers”) they divide the daily close-to-close returns into close-to-open and

open-to-close. They find that after one market closes, volatility is transmitted to the markets

opening several hours later even though these markets are geographically distant2.

A similar approach is adopted by Lin et al. (1994), who investigate how returns and volatility

are correlated between Tokyo and New York3. They use data which is divided into daily (open-

to-close) and overnight (close-to-open) returns, and estimate two models that were compared

with the one of Hamao et al. (1990). The results show the existence of bi-directional spillovers,

ie., daily returns of New York are correlated with Tokyo’s overnight returns and vise versa.

In contrast to Hamao et al. (1990), they find minor evidence of spillovers from daily returns

in one market to daily returns in the other market.

Other studies measure volatility transmission from one period to the next within (“heat

waves”) and across markets (“meteor showers”) at both return and volatility level using

different extensions of GARCH models.

Using an EGARCH model and assuming a constant conditional correlation over time, Kanas

(2000) looks at the volatility spillover between stocks and exchange rates in the US, EU

and Canada. He finds evidence of volatility spillover from stock returns to exchange rates

in all countries but the reverse spillovers (exchange rates to stock returns) are insignificant.

The return spillovers are symmetric, with the direction from stocks to exchange rates in all

1See also, Lee and Rui (2002) who examine the dynamic relationship between stocks and volume in same
regions. They found a positive relationship between the volumes and return volatility, therefore the US trading
volume has a predictive power for the other two stock markets.

2Koutmos and Booth (1995) use the same markets but estimate a multivariate E-GARCH model to test
for spillover effects between the conditional first and second moments of returns. They find evidence of the
“meteor shower” effect.

3See also Karolyi (1995) who investigates the return/ volatility spillovers in New York and Toronto stock
exchanges.
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countries except Germany. The model is parsimonious, but assuming a constant correlation

may be restrictive.4

Using a BEKK-GARCH, Fang et al. (2006) analyze the causal transmission between stocks

and bonds in the US and Japan. Their results show a bi-directional transmission of volatility,

in the sense that volatility of the stock market has a greater influence on bond volatility.

RiskMetrics of J. P. Morgan (1996) is another technique similar to the BEKK model of Engle

and Kroner (1995) that imposes the same dynamics on all elements of conditional variance

but assumes the latest one is an integrated process. The model has been used by Martens

and Poon (2001) to investigate the return and volatility spillover between Europe (France

and UK) and US stock markets. Martens and Poon (2001) find no spillover at the return

level but at the volatility level there exists a spillover from the US to Europe and vice versa.

To overcome the problems of previous models, Engle (2002) introduced the DCC-GARCH5

that allows for time-varying correlation and limits the number of unknown parameters. Con-

ditional volatility may show asymmetric behaviour6 which cannot be captured by the Engle’s

(2002) model but the ADCC-GARCH model of Capiello et al. (2006) can capture the leverage

effects to conditional volatilities and correlations. Savva et al. (2009) use this model to anal-

yse the spillovers between the US and some major European (London, Frankfurt and Paris)

stock markets using daily closing prices. The results show that domestic stock prices and

their volatilities are influenced by the foreign market; there is more spillover from European

markets to the US markets than reverse.

Diebold and Yilmaz (2009, 2012) use a different technique, the forecast error variance de-

composition framework of a generalized VAR model for examining both return and volatility

spillover effects among different markets in Euro area. This model can be used to examine the

4See, Hakim and McAller (2010) who study the interactions between different assets and regions assuming
conditional correlations are constant. They find evidence of mean/volatility spillover from each market to all
other markets, but the results shows also not constant correlations.

5Al-Zeaud ande ALshbiel (2012) evaluate the volatility spillover between US and EU using this model.
They found evidence of a spillover from London to New York, Pairs and Frankfurt stock markets and within
Europe a unidirectional spillover from Frankfurt to Paris and Paris to London.

6Volatility tends to increase more when negative shocks occur then when positive shocks occur.
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direction of spillover effects amongst the different asset markets and to extract periodizations

of the spillover cycles (Louzis, 2012). Several other studies use the so called “spillover index”

in their analysis (Summer et al., 2009; Wang et al., 2012; Suwanpong, 2010; Louzis, 2012).

A common problem of the above studies is that they model spillovers through dynamic rela-

tions and do not capture the contemporaneous spillover. By using daily data, often we cannot

extract the volatility effects that materialize during the trading day. For instance, when two

markets trade simultaneously, information from one asset could be transmitted to another

asset on the same day. The use of high-frequency data is expected to result in improved

inference on volatility transmission across markets and asset classes.

2.2 Sampling at higher frequencies

As a solution to identify the contemporaneous spillover effects various studies sample at higher

frequencies. Making the interval shorter by increasing the sampling frequency will allow for

more information and could better capture the contemporaneous spillover effects. Practically,

a sample with higher frequency will enable you to treat contemporaneous effects as lagged

effects, i.e., daily returns are split into smaller periods. These studies analyse the spillover

effects between both, single and different markets over different regions.

Kim (2005) estimates the contemporaneous and dynamic spillover effects when having trading

time differences by splitting each day returns into: daily, overnight and intraday periods. The

investigation reveals that there is a significant contemporaneous spillover effect from intraday

US returns to other country’s overnight period. Intraday Japanese returns have a positive

contemporaneous effect on all overnight returns that are examined, but the lagged effects are

mixed.

Baur and Jung (2006) follow Kim’s (2005) method of splitting daily returns to capture con-

temporaneous correlations and spillover effects between the US and German stock markets.

They use high frequency data and the Aggregate-Shock (AS) model of Lin et al. (1994)

for spillovers. Their main findings are that daytime returns significantly influence overnight
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returns in both markets and there is no spillover from the previous daytime returns of US to

the morning German market.

Martinez and Tse (2007) analyse the volatility transmission using intraday data between

bonds, foreign exchange and stock index futures markets in different regions. They find evi-

dence in all markets of both interregional (“meteor shower”) and intraregional (“heat wave”)

volatility effects but as Melvin and Melvin (2003) found, the latter one is more pronounced.

Clements et al. (2014) investigate the meteor shower and heat wave hypotheses at volatility

level using high frequency data in the US, Japan and Europe foreign exchange, equity and

bond future markets. The results show the presence of both effects, each market being

influenced by the events that occur in other markets/zones.

Both previous papers use high frequency future data which captures more information and

helps in better estimating the spillover effects, but only when there are no overlapping trading

periods between the markets.

To solve the problem with overlapping periods, Dimpfl and Jung (2012) apply the idea of

Menkveld et al. (2007), Susmel and Engle (1994) who suggest that the observations should

be restricted only to some relevant points in time. They employ a SVAR and estimate the

volatility transmission in Japan, Europe, US equity future markets. Their results indicate that

there are mean spillovers from US to Japan and Japan to Europe. In regard with volatility

spillovers, they found all markets react more intensely to the previous market.

9



2.3 Heteroskedasticity approach

Other studies use identification through heteroscedasticity approach to estimate the contem-

poraneous spillover effects. This technique allows to properly identify the contemporaneous

relationships by making use of the data’s heteroskedasticity. If in a simultaneous equation

model, we observe non-proportional changes in volatility over time, than we can use these

changes to identify the contemporaneous spillover effects.

Rigobon (2003) introduces a new method to examine the contemporaneous relations among

Argentina, Brazil and Mexico sovereign-bond yields and finds strong linkages across emerging

markets. The method allows solving the identification problem when having simultaneous

equation models. Supposing structural shocks have known (zero) correlation, the problem is

solved by relying on heterogeneity in the data to identify the structural parameters that are

consistent, regardless of how the heteroskedasticity is modelled.

Andersen et al. (2007) use a modified version of Rigobon’s (2003) technique to identify

the reaction of US, German and British stock, bond and foreign exchange future markets

to real-time U.S. macroeconomic news. The study is based on high frequency data, esti-

mating first the contemporaneous relationship and then in a separate analysis the spillovers

between bonds, stocks and exchange rates. The results show that there is a direct spillover

between the equity markets and that bad news has negative/positive impact during contrac-

tions/expansion.

Ehrmann et al. (2011) study the transmission between money, bond and equity markets

within and between US and Europe. They use two daily returns avoiding contemporaneous

effects, a multifactor model and the identification through heteroskedasticity to estimate the

international spillovers. The results show a spillover within asset classes but also international

cross-market spillover. For instance, there is a spillover from the US equity market to the

European money and bond market but also an opposite spillover from the European money

market to the US bond market. The US markets are explaining in proportion of 30% the

European markets movements, whereas the last one only around 6%.
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The previous literature investigates the return and volatility transmission of spillover effects by

looking at the same or different markets over different regions. These studies demonstrate that

information revealed during trading hours in one market is transmitted to same market and to

other markets next day. However, due to time differences, markets can trade simultaneously.

As such, is essential to distinguish between the spillover effects that are transmitted on the

same day and the next day. We study the contemporaneous and dynamic spillover effects

having the stock markets across different regions at volatility level. To estimate the spillover

effects properly we combine Rigobon’s approach based on heteroskedasticity and the high

frequency dataset with daily returns split in overlapping and non-overlapping periods.
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3 Model

In this study, we explore the stock markets (S) in the US and the UK. We follow the approach

of Rigobon (2003) and implemented by Ehrmann et al. (2011) in assessing volatility spillover

effects among our markets.

We define the global trading day by splitting each calendar day in three periods: UK

non-overlapping (UK ) , UK overlapping (UK0), US overlapping (US0) and the US non-

overlapping (US ). All times are taken to be Greenwich Mean Time as follows:

UK︷ ︸︸ ︷
8am ... 2 : 30pm

UK0︷ ︸︸ ︷
2 : 30pm ... 4 : 30pm

2 : 30pm ... 4 : 30pm︸ ︷︷ ︸
US0

4 : 30pm ... 9pm︸ ︷︷ ︸
US︸ ︷︷ ︸

Global Trading Day

When creating the global trading day, we account also for the Daylight Saving Time, i.e.,

the number of overlapping/non-overlapping trading hours is changing, e.g., from three hours

overlapping trading to two hours overlapping trading.

As per Mykland and Sheppard (2010, 2012), we calculate the intraday returns for all assets

based on the formula: ∆Pt = log(Pt) − log(Pt−1), where the Pt is the intraday price. Once

we have intraday returns, we construct realized variances7 as RVt = log(
∑N

t=1(∆Pt)
2).

We start by assuming that the realized variances are following a structural VAR (SVAR)

process:

ARVt = c+Φ(L)RVt + εt (1)

where RVt is a (4× 1) vector containing realized variances for different periods

7Andersen et al. (2003) demonstrate that by taking the logarithm of volatility the series will become close
to the normal distribution allowing us to conduct the estimation in a straightforward manner.
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RV t =

(
RVt

UK,S RVt
UK0,S RVt

US0,S RVt
US,S

)′
, (2)

where RVt
UK0,S/RVt

US0,S are the overlapping periods, c is a (4× 1) vector of constants and

Φ(L) is a (4× 4) matrix polynomial in the lag operator. The (4× 4) matrix A represents the

contemporaneous effects between the realized variances which has the following structure,

A =



1 0 0 0

α21 1 α23 0

α31 α32 1 0

α41 α42 α43 1


, (3)

where, e.g., α23 captures the contemporaneous spillover from RV US0

t to RV UK0

t and α32

captures the contemporaneous spillover from RV UK0

t to RV US0

t . The other parameters are

defined likewise. We set exclusion restrictions on matrix A according to our global trading

day, allowing for spillovers in one direction, forward. The spillovers from both overlapping

trading periods to UK as well as from the US to UK/US0 and UK to UK0 are set to zero, i.e

α12 = α13 = α14 = α24 = α34 = 0

When analyzing the contemporaneous spillover effects between stocks in the US and UK,

because these are captured by Φ(L), we face a problem that is present also in simultaneous

equations models, i.e. endogeneity. That is, when we have multiple variables whose behaviour

is interrelated such that they are effectively simultaneously determined.

An initial point through the identification is to estimate the reduced-form VAR by premulti-

plying Equation (1) by A-1 :

RVt = c∗ +Φ(L)∗RVt + ut (4)

The coefficients of Equation (4) can be estimated by OLS and are related to the structural

coefficients by: c∗ = A−1c,Φ(L)∗ = A−1Φ(L), ut = A−1εt and ut ∼ N(0,Ωt) where Ωt =

A−1Σt A−1
′
.

However, because of simultaneity, matrix A cannot be identified from Equation (1) through
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estimation of the reduced-form VAR in Equation (4). Therefore, most of the studies that

focus on long-term and lead-lag relations to identify the spillover effects between different

markets/assets and regions, are not able to capture the contemporaneous spillover effect.

Some others, use Cholesky decompositions and sign restrictions for the identification of con-

temporaneous spillover effect. However, orthogonalization is an assumption on the direction

of causality. In addition, imposing a large number of restrictions is not reasonable.

Rigobon (2003) proposes a way to solve the simultaneity issue, based on identification through

heteroskedasticity, i.e., the regime-switching model. In this approach, the existence of het-

eroskedastic regimes can solve the identification problem when having a simultaneous equation

model.

For the identification of the matrix A, containing the spillover effects, we have to impose

three assumptions. First, we assume that the structural shocks, εt, from Equation (1) are

uncorrelated. The variance of εt shows conditional heteroskedasticity. Namely, εt ∼ N(0,Σt),

whereΣt =



σ2
1t 0 0 0

0 σ2
2t 0 0

0 0 σ2
3t 0

0 0 0 σ2
4t


is a diagonal matrix based on the first assumption. Second,

the matrix A is stable across regimes. Third, there must exist at least two regimes of distinct

variances Ωt. If the first assumption holds, the system is identified by considering a change

in the variance of shocks.

For example, if we observe a significant improvement in the variance of the equity shocks in

the US that will affect the covariance between equities in the US and UK, i.e., we are able to

better examine the responsiveness of the UK equity to the US equity shocks. If there is no

significant change between variances or they shift proportionally the system is not identified.

Following Ehrmann et al. (2011) we start by computing rolling windows variances from

the reduced form residuals, ut, that contain only the contemporaneous effects. We define

five heteroskedastic regimes based on when the fifty day rolling variances are higher than the

residuals average standard deviation over the full sample times the threshold value of 0.8. The
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first regime consist of observations where all variables show lower than normal volatility. The

other four regimes are defined likewise: a high UKS volatility regime, a high UKS
0 regime, a

high USS0 regime and a high USS regime. The basic idea is that in a regime where one variable

has higher volatility while the others have low volatility, we achieve more information on the

others variable responses to the variable with high volatility shocks since they are more likely

to occur, and vice versa.

The covariance matrices of each regime are used then in the GMM estimation of the spillover

effects coefficients.

min d′ d with d = A′ΩtA−Σt (5)

s.t. Σt is diagonal,A restrictions

where Σt is the variance of the structural shocks assumed to be uncorrelated, which we are

interested in, and Ωt is the variance-covariance matrix that we estimate in each regime t.

To assess the significance of structural parameters, Φ1 and matrix A from Equation (1)

we implement the following bootstrap procedure. We draw five regimes from a multivariate

normal distribution and for each regime, we premultiply the standard normal vector by the

Cholesky decomposition of our original regimes. The new regimes have the same covariance

structure in each of the 1000 bootstrap replications. Since we excluded observations which

were not sufficiently close to one of our regimes, we recursively simulate the dependent vari-

ables, RVt and estimate the VAR again. As such, the simulation and estimation procedure is

able to account for the gaps and lags in the data. For each draw, using our regime-dependent

VAR covariance matrices, we estimate the coefficients by GMM, which allows us to calculate

the p-values and confidence intervals for the parameter estimates.
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4 Data

We use high frequency data sampled at a 5-minute8 frequency for the US and UK stock

markets. The data are obtained from Thomson Reuters Tick History and cover the period

from 3 January 2007 to 31 December 2013. Days where one market is closed, as well as public

holidays are eliminated from the sample. For our analysis, we employ the S&P500/FTSE 100

indices for the US/UK stocks traded on New York Stock Exchange/London Stock Exchange.

In Table 1, we provide summary statistics for equity volatilities 9 over all regions. As can

be seen, the highest level of volatility is in the US equity market, followed by the US and

UK overlapping trading periods. The highest mean volatility and variability is in the US

overlapping trading period. Skewness is positive in all trading periods. The implies that

positive changes in equity markets occur more often than negative changes. The excess

kurtosis in all four series implies that large changes occur more often than is the case of

normally distributed series. Running Augmented Dicky Fuller (ADF) tests, we can reject the

null hypothesis of a unit root and confirm the stationarity of equity volatilities, significant at

1% level in all trading zones.

INSERT TABLE 1 HERE

Table 2 presents the correlation coefficients among financial markets. We notice the existence

of a positive relationship between stocks in both UK/US trading periods. During the two

overlapping trading periods, we can see the highest positive relationship between stocks mar-

kets. The correlation matrix tell us the relationship between stocks but does not give us the

direction of causality which can run in both sides, e.g., the spillover from UK to US stock

market is different than from the US to UK stock market.

INSERT TABLE 2 HERE

8See Liu et al. (2012) that consider almost 400 realized measures, across seven different classes of estimators,
and compare them with the simple ”realized variance” (RV) estimator. They found that it is difficult to
significantly beat the 5-minute RV.

9We define equity volatilities as Vt =
√∑N

t=1(∆Pt)2.
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5 Results

5.1 The Reduced Form VAR

We start our analysis with the estimation of the reduced form VAR using Equation (4). Using

the Akaike Information Criterion (AIC) to select the optimal lag length, we find a lag length

of 5 days to be optimal. As such, we carry out all our analysis with a 5-day lag length.

We examine the relationships between the realized variances performing Granger causality

tests. Granger (1969) shows that if the past values of a variable/group of variables, i, are

found to be helpful for predicting another variable/group of variables, j, then i is said to

Granger - cause j.

The results of the Granger causality tests for realized variances of stocks markets are presented

in Table 3 with corresponding values of F-tests. We observe a strong, significant bidirectional

causality between stocks markets in all trading periods.

INSERT TABLE 3 HERE

Overall, these results imply that in all four trading periods stock market volatility significantly

Granger causes the volatility in every trading period. Regarding the US/UK overlapping

trading periods, we notice a lot of interactions between variables, which means that there are

long-run casual effects among markets. However, the causality running from UKS
0 to USS0 is

stronger that vice versa. This suggests that the US overlapping market is affected more by

the uncertainty in the UK overlapping market. Another strong causality can be seen between

UKS
0 / USS0 and USS. UKS

0 Granger cause USS stronger than USS0 . This indicates that what

occurs during the overlapping trading period in the UK stock market has a bigger impact on

the US stock market than what occurs in the US overlapping trading period. The causality

tests give us information only about which variable we can use in the future as explanatory

variable, to clarify the behaviour of other variables in the VAR. As such, we still don’t know

if we have a positive or negative relationship, what is the speed, or persistence between our

variables. For instance, we are not able to show how will an increase in the overlapping stock
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markets affect the non-overlapping stock markets, i.e., what is the magnitude of spillover

effects among financial markets.

Table 4 reports the dynamic reduced form VAR effects, matrix Φ∗
1 as given in Equation (4).

The estimation of Φ∗
1 allows us to explain the spillover effects that are transmitted the next

trading day. For instance, we find significant and strong spillover effects between the US and

both overlapping periods. A 1% increase in RVt−1
US,S leads to an increase into the next day

of 0.219% in the UK overlapping period, respectively, 0.316% in the US overlapping period.

We notice a spillover effect of 0.07 from RVt−1
UK0,S to the RVt

US0,S , while to the RVt
US,S

is higher with the value around 0.099. The results confirm the importance of investigating

the transmission of spillover effects among financial markets. However, the dynamic reduced

form VAR effects, Φ(L)∗ are a combination of the dynamic, Φ(L) and the contemporaneous

effects, matrix A. Therefore, without identifying matrix A we cannot determine the share of

spillover due to either contemporaneous or dynamic interactions between our variables.

INSERT TABLE 4 HERE

5.2 Structural Form Results

Having already the residuals from the reduced form VAR, the next step is to estimate matrix

A containing the contemporaneous spillover effects between our variables. However, before

being able to estimate Equation (5) we need to define the regimes in such way that at least

two regimes have different variances, a necessary condition to achieve identification.

I. Contemporaneous Relationships

In Table 5, we present the contemporaneous relations, matrix A as given in Equation (7)

together with the bootstrap results. The coefficients have negative signs as matrix A is on

the left-hand side of Equation (1), as such when taken to the right-hand side the spillover

effects become positive:

RVt
UK0,S = −0.13RVt

UK,S + 0.25RVt
US0,S (6)

RVt
US0,S = 0.11RVt

UK,S + 0.17RVt
UK0,S (7)

18



RVt
US,S = 0.22RVt

UK,S + 0.29RVt
UK0,S + 0.36RVt

US0,S (8)

We notice a high and positive contemporaneous spillover of 0.25 from the US overlapping trad-

ing period to the UK overlapping trading period. The coefficient suggest that a 1% increase

in RVt
US0,S leads to a contemporaneous increase of 0.25% in the RVt

UK0,S . Vice versa, from

the RVt
UK0,S to the RVt

US0,S the spillover is smaller, approximately 0.17 indicating that the

opening of NYSE has a bigger impact on the stocks traded on LSE than the other way around.

This is inconsistent with the Granger causality findings which just consider the lagged effects

without attention paid to contemporaneous effects.

Equation (8) explains the spillover effect from RVt
UK,S , RVt

UK0,S and RVt
US0,S to RVt

US,S .

We observe the highest and most significant spillover of 0.36 from the US overlapping trad-

ing period to the US non-overlapping trading period, which again is not evident in the

Granger causality test reported in Table 3. Regarding the spillover from the UK non-

overlapping/overlapping trading period on the US non-overlapping trading period, we find

that RVt
UK0,S spillover is 0.29, greater than the RVt

UK,S , with the value about 0.17, i.e., in

line with the findings of Table 3. These results imply the existence of strong contemporaneous

effects that are transmitted in the same day with risk management and international portfo-

lio diversification implications for both countries. A shock occurring in the US stock market

is automatically transmitted to the UK stock market in the same day. As such, investors

and risk managers who do not pay attention to the contemporaneous effects may assess in-

accurately the uncertainty exposure, i.e., the evaluation of risk. Practically, based on the

reduce-form VAR we assume the risk transmission is with one day lag, instead by identifying

the contemporaneous effects we show that risk is transmitted in the same day when there is

simultaneous trading.

INSERT TABLE 5 HERE
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II. Dynamic Relationship

Having the total spillover, i.e., matrix Φ∗
1 and understanding how much of spillover is due

to the contemporaneous interactions, i.e., matrix A, we are able to explore the dynamic

linkages. Table 6 presents the findings for dynamic relations, matrix Φ1 as given in Equation

(1) alongside with the bootstrap results. We find there is no significant dynamic spillover

from RVt−1
US0,S to RVt

UK,S and RVt
US,S , suggesting the incorporation in the same day

of the spillover effect. There is, however, a positive dynamic spillover from RVt−1
US,S of

0.21 to the UK equity market, as well as both UK/US overlapping trading periods with the

values of 0.16/0.25. These relationships reveal the importance of taking into account the

contemporaneous spillover effects, i.e., the next day are transmitted only the effects due to

non-overlapping trading.

When comparing the dynamic SVAR effects, in Table 6 with the dynamic reduced form VAR

effects, in Table 4, we observe they lead to different conclusions. As can be seen, a 1% increase

in RVt−1
UK0,S causes an increase in RVt

US,S equal to 0.09% in the reduced form, versus a

decrease of -0.04% in the structural form. These relationships are essential when implementing

global hedging strategies. For example, knowing the previous reduced form dynamics one

would take a long position in options to reduce the risk of adverse price movements. However,

the structural form dynamics demonstrate that actually we increase the risk, i.e., a 1% increase

in UK overlapping will lead to a decrease of -0.04% in the US. Looking at the spillover from

RVt−1
US,S to both UK/US overlapping periods we find a suggestive positive relationship of

0.21/0.31 in the reduced form VAR, respectively a lower positive relationship of 0.16/0.25 in

the structural form. Based on the reduced form results an investor would take a long position

in options, which results in increasing instead of reducing the risk. Only the identification of

contemporaneous and dynamic effects separately enable us to reduce the risk of adverse price

movements.

INSERT TABLE 6 HERE
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III. Impulse response functions

Knowing matrix A containing the contemporaneous effect, we can determine the contem-

poraneous reactions of structural shocks to εt given by A−1. Therefore, Table 7 presents

the estimates of the SVAR impulse responses. Examining the long run impact of RVt
UK,S ,

RVt
UK0,S , RVt

US0,S and RVt
US,S to a unit shock in RVt

UK,S , we notice the impact is smaller

compared to shocks in other variables. Hence, there is no influential long-run effect of volatil-

ity spillover from any of the realized variances to the UK stock market. When we explore the

impulse responses of the overlapping trading periods to a unit shock in all other realized vari-

ances we observe suggestive interactions. For instance, a unit shock in RVt
UK0,S/RVt

US0,S

induces an increase in both overlapping periods of approximately 10.31/9.12 units with re-

spect to first shock, respectively 5.70/7.96 units to the second shock. This implies strong

volatility spillover between the UK and the US stock markets during simultaneous trading.

INSERT TABLE 7 HERE

IV. Variance Decomposition

Having analysed the contemporaneous relationships, dynamic effects and the long-run impulse

response, we turn our attention to the overall significance of each series in the system. In

essence, the share of the variance of each asset that is explained by the structural shocks

occurring in foreign markets and domestic market. Consequently, we compute the 250-day

ahead forecast error variance decompositions which are presented in Table 8.

INSERT TABLE 8 HERE

Each element gives the percentage contribution of the structural shocks, i.e., εt
UK,S , εt

UK0,S,

εt
US0,S and εt

US,S in clarifying the share of the total variance of each equity. We notice that the

highest share of variance is due to the own structural shocks, ranging between 36% and 62%.

The spillovers to the UK stock market are especially strong: structural shocks to US non-

overlapping trading period explain 21.41% of the UK non-overlapping variance, respectively,

21.55% of the UK overlapping variance. A large share of the US stock movements are due
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to the UK stock market, i.e., near 26% and 30% of the variability in the US overlapping and

US non-overlapping variances is defined by the UK overlapping shocks. The main finding is

that a large share of the interactions in the equity markets are justified by the simultaneous

trading period shocks.
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6 Conclusion

In this paper, we analyze the total spillover distinguishing between the dynamic and contem-

poraneous spillover effects in the UK and the US stock markets. By using the high frequency

data split in overlapping and non-overlapping periods we are able to explain the complexity

of these relationships at volatility level.

We observe that the opening of the NYSE induces a higher contemporaneous spillover to the

UK stock market. When comparing the spillover from the UK non-overlapping/ overlapping

trading period to the US stock market, we notice the latter one leads to a higher increase.

The structural dynamic effects, as well as the contemporaneous effects suggest that the in-

formation is transmitted in the same day when we have overlapping trading and only the

remaining spillover into the next day. We show the implications of our model by comparing

the structural with the reduced form dynamic effects. The results show that the bi-directional

dynamic relationships between the US and both the US and UK simultaneous trading periods

are overestimated in the traditional VAR. Furthermore, we show the direction of causality,

magnitude of the spillover and the overall importance by generating the structural impulse-

responses, respectively the variance decomposition.

Our results have major implications for international diversification, risk management and

hedging strategies. Investors and risk managers who do not pay attention to the contempo-

raneous effects may inadequately evaluate the risk, i.e., based on traditional VAR the risk is

transmitted with one day lag, instead we show that the transmission is within the same day

when simultaneous trading occurs. The implementation of hedging strategies concentrating

on the reduced form results carry an increase in risk exposure. We establish that only by

identifying the contemporaneous and dynamic effects separately we are able to reduce the

risk of adverse price movements. All in all, our estimates confirm the relevance of taking into

account the simultaneous information.
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Table 1: Summary Statistics

Vt
UK,S Vt

UK0,S Vt
US0,S Vt

US,S

Mean 0.0147 0.0182 0.0191 0.0159

Max 0.1874 0.1215 0.1863 0.1245

Min 0.0042 0.0037 0.0043 0.0031

Std.Dev. 0.0104 0.0111 0.0130 0.0134

Skew. 5.46 2.46 3.49 3.30

Kurt. 63.07 13.11 27.15 18.61

ADF −6.36∗ −5.00∗ −5.61∗ −4.98∗

Note: This Table reports summary statistics for the equity volatilities in four trading periods. ADF is the
t-statistics for the Augmented Dicky-Fuller test. ∗ denote the significance at the 1% level.
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Table 2: Correlation Matrix

UKS UKS
0 USS0 USS

UKS

UKS
0 0.8472

USS0 0.8203 0.9088

USS 0.8160 0.8306 0.8553

Note: This Table reports the correlation between equity in UK, UK0, US0 and the US.
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Table 3: Granger Causality for Realized Variances

Null Hypothesis 5 lags

F-statistics P-value

UKS
0 does not Granger Cause UKS 36.28∗∗∗ 0.00

UKS does not Granger Cause UKS
0 7.85∗∗∗ 0.00

USS0 does not Granger Cause UKS 20.25∗∗∗ 0.00

UKS does not Granger Cause USS0 6.71∗∗∗ 0.00

USS does not Granger Cause UKS 44.36∗∗∗ 0.00

UKS does not Granger Cause USS 2.92∗∗ 0.01

USS0 does not Granger Cause UKS
0 2.29∗∗ 0.04

UKS
0 does not Granger Cause USS0 6.55∗∗∗ 0.00

USS does not Granger Cause UKS
0 25.79∗∗∗ 0.00

UKS
0 does not Granger Cause USS 7.18∗∗∗ 0.00

USS does not Granger Cause USS0 47.26∗∗∗ 0.00

USS0 does not Granger Cause USS 5.07∗∗∗ 0.00

Note: This Table reports the results for the Granger causality tests on the reduced-form VAR. The reduced-
form VAR is estimated using 5 lags. We present F-statistics and their associated P-values. ∗∗∗, ∗∗, ∗ denote
significance at the 1%, 5%, 10% levels, respectively.
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Table 4: The 1storder Reduced Form Effects between Realized Variances

UKS UKS
0 USS0 USS

UKS 0.2101 0.2225 -0.0637 0.2114

UKS
0 0.1017 0.2320 -0.0538 0.2191

USS0 0.0087 0.0727 0.1848 0.3164

USS -0.0248 0.0996 0.0451 0.3949

Note: This Table reports the dynamic relationship, matrix Φ∗
1 as given in Equation (4). The vector of variables

is RV t =
(
RVt

UK,S RVt
UK0,S RVt

US0,S RVt
US,S

)′
.
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Table 5: Contemporaneous Relationship between Realized Variances

Parameter estimates Bootstrap

Mean Confidence Intervals

α21 0.1393∗∗∗ 0.1379 [ 0.1133, 0.1583]
α23 −0.2533∗∗∗ -0.2530 [-0.2632, -0.2420]
α31 −0.1197∗∗∗ -0.1225 [-0.1479, -0.1156]
α32 −0.1796∗∗∗ -0.1805 [-0.1931, -0.1762]
α41 −0.2286∗∗∗ -0.2279 [-0.2384, -0.2137]
α42 −0.2935∗∗∗ -0.2934 [-0.3040, -0.2822]
α43 −0.3663∗∗∗ -0.3659 [-0.3754, -0.3556]

Note: This Table reports the contemporaneous relationship, matrix A as given in Equation (1). We present
coefficients together with their associated mean and 95% confidence intervals obtained in a bootstrap. Judging
through the p-value from bootstrap all coefficients are significant at the 1% level. The vector of variables is

RV t =
(
RVt

UK,S RVt
UK0,S RVt

US0,S RVt
US,S

)′
.
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Table 6: The 1storder Dynamic Effects between Realized Variances

Parameter estimates Bootstrap

Mean Confidence Intervals

Panel A: Dynamic transmission to RVt
UK,S

ϕ11 0.2101∗∗∗ 0.2096 [ 0.1535, 0.2671]
ϕ12 0.2225∗∗∗ 0.2219 [ 0.1735, 0.2676]
ϕ13 −0.0637∗∗ -0.0623 [- 0.1338, 0.0057]
ϕ14 0.2114∗∗∗ 0.2112 [ 0.1664, 0.2564]

Panel B: Dynamic transmission to RVt
UK0,S

ϕ21 0.1287∗∗∗ 0.1300 [ 0.0614, 0.1992]
ϕ22 0.2446∗∗∗ 0.2405 [ 0.1814, 0.2952]
ϕ23 −0.1095∗∗ -0.1071 [- 0.1885, -0.0265]
ϕ24 0.1684∗∗∗ 0.1682 [ 0.1154, 0.2210]

Panel C: Dynamic transmission to RVt
US0,S

ϕ31 −0.0348∗∗ -0.0342 [- 0.0828, 0.0167]
ϕ32 0.0044∗∗ 0.0050 [- 0.0362, 0.0463]
ϕ33 0.2021∗∗∗ 0.2009 [ 0.1372, 0.2664]
ϕ34 0.2517∗∗∗ 0.2511 [ 0.2114, 0.2887]

Panel D: Dynamic transmission to RVt
US,S

ϕ41 −0.1058∗∗∗ -0.1042 [- 0.1755, -0.0314]
ϕ42 −0.0460∗∗ -0.0458 [- 0.1035, 0.0153]
ϕ43 0.0078∗∗ 0.0083 [- 0.0868, 0.0944]
ϕ44 0.1664∗∗∗ 0.1645 [ 0.1088, 0.2177]

Note: This Table reports the dynamic relationship, matrix Φ1 as given in Equation (1). We present coefficients
together with their associated mean and 95% confidence intervals obtained in a bootstrap. ∗∗∗, ∗∗, ∗ denote
significance at the 1%, 5%, 10% levels, respectively, judged through the p-value from bootstrap. The vector

of variables is RV t =
(
RVt

UK,S RVt
UK0,S RVt

US0,S RVt
US,S

)′
.
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Table 7: Long-Run Impact Matrix

εt
UK,S εt

UK0,S εt
US0,S εt

US,S

RVt
UK,S 4.6064 9.2541 5.1448 7.7242

RVt
UK0,S 2.8408 10.3146 5.7098 7.8440

RVt
US0,S 2.8235 9.1267 7.9639 8.4564

RVt
US,S 3.6169 11.1779 8.0760 11.4418

Note: This Table reports the long-run impact matrix of structural VAR. The impacts are computed at the
250-day ahead response to a unit structural shock.
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Table 8: Variance Decomposition

εt
UK,S εt

UK0,S εt
US0,S εt

US,S

RVt
UK,S 36.24% 33.72% 8.63% 21.41%

RVt
UK0,S 3.90% 62.85% 11.70% 21.55%

RVt
US0,S 2.63% 26.15% 46.83% 24.39%

RVt
US,S 3.74% 30.14% 18.91% 47.21%

Note: This Table reports the share of the variance of each equity that is explained by the structural shocks.
The variance decomposition are computed at the 250-day ahead response to a unit structural shock.
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